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Non-Brownian particles suspended at low volume concentration in a rotating horizontal cylinder filled with
a low-viscosity fluid are observed to segregate into well-defined periodic axial bands. We present an experi-
mental investigation of the dependence of the phenomenon on particle characteristics, tube diameter and
length, and fluid viscosity. A theoretical explanation of the phenomenon is suggested, in which the segregation
occurs as a result of mutual interaction between the particles and inertial waves excited in the bounded fluid.
This leads to the result that macroscopic suspended particles accumulate in alternate nodes of the wave
excitation, which is in agreement with the experiments, and leads to two degenerate band patterns for each
mode. Under some conditions the observed pattern oscillates between the two possible band configurations.
The mechanism underlying the oscillations is unclear. A confirmation of the theoretical approach was obtained
by means of a photographic capture of the flow field resulting from the inertial waves.
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I. INTRODUCTION

The rotating horizontal tube partially or completely filled
with a mixture of fluid and solid particles presents a fertile
ground for a variety of pattern-formation phenomena. Recent
years have seen extensive experimental and theoretical in-
vestigations into the different self-organizing systems, the
most intensively studied being the banding phenomenon oc-
curring in a mixture of two or more granular materials either
in air �1� or within a fluid �2�. Yet another example is the
segregation into axial bands of neutrally buoyant particles
contained in a viscous suspension which partially fills either
the available volume between two concentric horizontal cyl-
inders �the outer cylinder being at rest while the inner rotates
at constant frequency� �3�, or a rotating horizontal tube �4�.

The banding of a dilute suspension containing non-
Brownian particles in a fluid that fills a rotating horizontal
cylinder was first observed several years ago during research
into the influence of anisotropy on the growth of dendritic
crystals �5�. In order to prevent the crystals from interacting
with a substrate, a supersaturated solution of NH4Cl was
placed in a horizontal cylinder which was then rotated about
its axis with a constant angular frequency, thus attaining levi-
tation during which the growth could be examined. As the
crystals nucleated, a surprising tendency to accumulate at
specific, periodically spaced bands was observed �Fig. 1�.

Preliminary experimental investigations of the phenom-
enon were carried out indicating a widespread phenomenon,
occurring for a large range of particle size and of solution
viscosity. Lipson and Seiden �6� observed the phenomenon
for millimeter-sized plastic particles and air bubbles, as well
as for aluminum flakes of the order of 100 �m, suspended in
water. Breu et al. �7� reported the banding phenomenon for a
dilute aqueous suspension containing 100 �m glass beads. In

both cases the dominant periodic spacing between consecu-
tive bands was approximately 3.5R–4R �R is the tube ra-
dius�, though for the smaller particles instances with periods
equal to approximately half the above spacing were also ob-
served. Matson et al. �8� carried out experiments with
100 �m glass beads suspended in various water-glycerol so-
lutions and reported a periodic spacing of approximately
2.4R. With regard to the latter work, an attempt to explain
the banding mechanism was reported by Lee and Ladd �9�,
based on particle-particle interaction in the low Reynolds
number regime. The Reynolds number referred to is Re
=dUrel� /�, where d is a typical particle dimension, Urel its
relative velocity with respect to the fluid, and � and � are the
fluid density and dynamic viscosity, respectively. The peri-
odic spacing anticipated by their theory, taking into account
the important screening effect of the bounding cylinder, was
1.4R. Experiments on growing NH4Cl crystals �5,6� were
more ambivalent and have shown two tendencies, 2.5R and
3.8R. The fact that crystals of a large range of sizes grew
simultaneously makes the interpretation of these experiments
difficult.

The present paper, in part an expanded account of a pre-
viously published communication �10�, concerns an exten-
sive experimental investigation, complemented by a theoret-
ical analysis, into the main characteristics of the banding
phenomenon, focusing mainly on the low viscosity limit. The
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FIG. 1. Banding phenomenon of NH4Cl crystals in their super-
saturated solution �from Lipson �5��.
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results of the experimental investigation, presented in Sec. II,
indicate a robust phenomenon independent to a large extent
on particle characteristics and scaling with the tube diameter.
The dependence on the finite length of the tube, which was
not considered in previous experiments, turned out to be cru-
cially important. The theoretical approach, based on the as-
sumptions of linearity �i.e., small perturbation to the other-
wise rigidly rotating fluid� and low viscosity, whereby the
segregation into bands results from a mutual interaction be-
tween the gravity-induced motion of the suspended particles
and excited inertial waves in the bounded rotating fluid, is
presented in Sec. III. Experimental confirmation of the theo-
retical result, in the form of a photographic capture of the
flow field pertaining to the banding phenomenon, is pre-
sented in Sec. IV. Finally, in Sec. V, we discuss the limits of
the theoretical framework with regard to nonlinear and vis-
cous effects which were neglected in the theory.

II. EXPERIMENTAL INVESTIGATION

A. Experimental setup

The experimental apparatus used is a basic mechanical
system designed to rotate glass tubes about their horizontal
axis �Fig. 2�. The system consists of two aluminum supports

upon which a pair of 70 mm �inner diameter� bearings are
mounted. The supports are fastened together with four alu-
minum rods. A glass tube is tightly fixed to the bearings on
both ends by PVC sleeves and is driven by a rubber O-ring
from a dc motor. The glass tube contains a piston that allows
the tube length to be varied. The opposite end, used to fill the
tubes with the fluid and particles, is either closed with a
rubber plug �Secs. II B and II D� or made of transparent ma-
terial to allow investigation of the phenomenon in the verti-
cal plane perpendicular to the axis of rotation �Secs. II C and
II E�. The particles used in the different sets of experiments
were either purchased �primarily from Polysciences, Inc.� or
were made in our mechanical workshop. Specific details of
the particles, tubes, rotation rates, and fluid viscosity em-
ployed in the different experiments are given in the sections
below.

The phenomenon was recorded on tape using a charge-
coupled-device �CCD� camera which was placed either at
right angles to the axis of rotation �Secs. II B and II D� or on
the axis, facing one of the tube ends �Secs. II C and II E�.
The recorded tape was then digitally analyzed �Secs. II B,
II D, and II E� or used for illustration as a video clip �11�.

B. Dependence of banding period on tube length

Four sets of experiments were carried out in water ��
�1 cP�. In each set the tube length was varied at intervals of
a few millimeters over a total range of several tube diam-
eters. For every tube length the phenomenon was recorded
via a CCD camera facing the vertical plane through the axis
of rotation �Fig. 2�. Different particles and/or tube diameter
were used in each set in order to further study the effect of
particle characteristics and tube diameter on the phenom-
enon. The volume fraction �disperse phase volume/total vol-
ume� was kept constant in each set, and was in general of the
order of 1%. Table I shows details of particle characteristics,
tube diameter and length-range, and frequency of rotation,
which were used in the different sets.

The recorded tape of each experiment, lasting a few min-
utes, was analyzed as follows: Ten individual frames �gray-

FIG. 2. The experimental system used to rotate glass tubes about
their axis for the investigation of the banding phenomenon. A is the
aluminum stand, P the teflon piston, R the rubber plug, and M the
motor. C is the charged-coupled-device �CCD� camera used to
record the phenomenon.

TABLE I. Details of the parameters used in each of the four sets of experiments.

Set Particle
Dimensions

�mm�
Specific
gravity

Volume
fraction

�%�

Tube
diameter

�mm�

Tube
length
range
�mm�

Rotation
frequency

�Hz�

1
Polystyrene
ball

d=3 1.05 1.27 44.5 70–200 1.00

2
Perspex
cube

a=2 1.18 0.51 44.5 70–200 1.54

3
Perspex
cylinder

d=1, l=2 1.18 0.61 25.7 40–165 1.42

4 Nylon ball d=1.5 1.11 1.02 25.7 40–177 1.20
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scale images� were extracted at intervals of about 10 s1 �Fig.
3�a�� and entered into a computer program. The program
converted each frame into a black and white array2 �Fig.
3�b��. It then provided a column-intensity graph �summing
vertically� for each frame �Fig. 3�c�� and finally provided a
mean column-intensity graph of the ten frames �Fig. 3�d��.
Another computer program calculated the mean position of
the peak of each band in the tube using a Gaussian fit �Fig.
3�e��. This provided a measurement of the periodic length.

In all the experiments it appeared that the exact value of
the rotation frequency was not important, provided that it lay
between two extremes. At the lower end, the frequency must
be high enough to levitate the particles so that they remain in
suspension. At the upper end, the frequency must not be so
high as to pin the particles to the tube wall by centrifugal
effects. The results of the four sets are presented in the ge-
neric graph of Fig. 4, where both the tube length and periodic
length are scaled by tube radius. Apart from minor deviations
we see the same sawtoothlike dependence of the periodic
length on tube length, with the data generally falling on the
straight lines �dashed lines in Fig. 4�:

L = n
�

2
, n = 2,3,4, . . . ,

here L is the tube length and � the periodic length.

In all sets it can be seen that for relatively short tube
lengths there is a gap between two successive slopes in
which the bands did not form at all. It is also worth noting
that for long tubes there seems to be a convergence of the
periodic length to a value of four times the tube radius. The
dominant periodic lengths in the experiments done by Lipson
and Seiden �6� and by Breu et al. �7� are in agreement with
the above graph.

C. Oscillations

Another important observation concerns the position of
bands relative to the bounding perpendicular walls of the
cylinder: at the walls there can either be a band or the mid-
plane between two bands �see Fig. 5�, thus allowing for two
possible states of the system. This last fact is manifested in
an unexpected phenomenon of oscillation between two pos-
sible configurations. Situations where this occurred are rep-
resented by the solid symbols in Fig. 4. These oscillations
resemble the well-known oscillations between two coupled
pendulums from classical mechanics and the Rabi oscilla-
tions between two coupled states in quantum mechanics.
They were observed at analogous points in all the sets of data
and can be seen to be mainly above the average periodic
length ��3.6R�. In Fig. 6 we present two periods of oscilla-
tions for the case of polystyrene balls oscillating between the
two possible states at L=16.5 cm �a video clip of the oscil-
lating bands is also available �Ref. �11���. The time period in

1The time interval between successive frames was in some in-
stances affected by the stability of the band patterns �e.g., oscilla-
tions between two possible patterns�.

2The grayscale threshold level used in the conversion corre-
sponded to the maximal background illumination.

FIG. 3. Successive stages in the analysis of the ten frames taken
for each tube-length illustrated for Perspex cylinders at L
=130 mm �third set�: �a� One of the ten frames entered into the
computer program. �b� Converted into black and white array. �c�
Column-intensity graph for the particular frame. �d� Mean column-
intensity graph for the ten frames. �e� Fitting the bands using a
Gaussian curve �broken line�.

FIG. 4. Summary of all data gathered in the investigation of the
dependence of periodic length on tube length �both scaled by tube
radius� for particles suspended in water, manifesting general fea-
tures of the banding phenomenon. The solid symbols indicate os-
cillating patterns �discussed in Sec. II C�.

FIG. 5. Two boundary conditions manifested for Perspex cylin-
ders suspended in water at L=11.2 cm. For these boundary condi-
tions a degenerate state with bands shifted half a period to the right
also exists.
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this specific case is approximately 21 s. Note that the tube
length in this instance is equal to twice the periodic length.

We further examined the development of the oscillating
bands by placing the CCD camera toward one of the bound-
ing walls of another tube �having an inner diameter equal to
58 mm�, which was in this case sealed with a transparent
window. Figure 7 shows two stages in the dynamical devel-
opment of the phenomenon. When well-defined the bands
are characterized by off-centered rings �Fig. 7�a��. They then
contract �Fig. 7�b�� before splitting and merging with adja-
cent bands.

D. Higher viscosities

In order to investigate the influence of viscosity we have
carried out two experiments similar to the ones described in
Sec. II B, with higher values of fluid viscosity. The particles
used were 1 mm glass beads, suspended in a water-glycerol
solution. The reason for using glass beads lies in the rela-
tively high specific gravity ��2.5� of glass—a fact that en-
abled us to work with high glycerol concentrations without
the particles becoming neutrally buoyant. We present in Fig.
8 the results of the two sets of experiments done with solu-
tion viscosities of 7 and 10 cP �56% and 62% glycerol by
weight, respectively, at 25 °C�. The volume fraction in both
cases was 0.74% and the tube’s inner diameter was 25 mm.

The data show no significant difference between these
results and the results obtained with water ���1 cP�, other
than that the average periodic length corresponding to Fig. 8
is slightly greater, and that there were no oscillations ob-
served in these experiments. Nevertheless, for values of vis-
cosity higher than 10 cP we noticed an increasing tendency
of the patterns to lose their characteristic features, namely
their long-lived stability and radial, ringlike structure. Mat-
son et al. �8� reported that the patterns ceased to exist for
higher values of viscosity than approximately 60 cP.

E. The motion of a single particle

In the theoretical discussion �Sec. III A� we shall make
reference to the motion of a single particle in the otherwise
rigidly rotating fluid. An additional experiment was therefore
carried out to examine a typical trajectory. The experimental
system was the same as the one used in the previous experi-
ment to observe the particles’ motion from the axial direc-
tion. The inner diameter of the tube was 55.8 mm and the
frequency of rotation was 0.77 Hz, chosen in the interval
where the banding phenomenon was confirmed. The particle
used was a polystyrene ball having a diameter of 3 mm. In
the analysis of the motion we utilized each of the individual
frames, taken at time intervals of 0.02 s, to determine the

FIG. 6. Polystyrene balls suspended in a water-filled 44.5 mm
�inner diameter� tube oscillating between two allowed states at L
=16.5 cm. Note that the middle band splits in two in order to form
the new bands �and vice versa�. The interval between successive
frames is 3.5 s.

FIG. 7. End view showing two main stages in the development
of the oscillating bands �a� off-centered rings when the bands are
well-defined, and �b� bands contract just before splitting.

FIG. 8. Dependence of the periodic length on tube length �both
scaled by tube radius� for 1 mm glass beads suspended in water-
glycerol solutions.
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particle’s position as a function of time. The results are pre-
sented in Fig. 9.

The particle trajectories, both in the laboratory frame and
in the rotating frame, are almost circular, adjoining to the
tube surface. The sense of rotation as seen in the laboratory
frame is clockwise, while the rotating frame sense is anti-
clockwise. An estimate of the rate of the circular motion can
be drawn from the solid symbols which mark every fifth
point. These indicate that to a good degree the particle main-
tains a uniform velocity. The frequency of rotation was found
to be approximately that of the bounding tube �to within
1.5% of ��.

III. THEORETICAL ANALYSIS

A complete analytical solution to the problem of a self-
organizing system of particles suspended in a rotating fluid-
filled tube is obviously a formidable task. Thus when ad-
dressing the problem we have to make some simplifying
assumptions. In general, our approach to the problem, based
on the assumption of a dilute suspension, consists of decou-
pling the motion of the dispersed phase from that of the
continuous phase �12�. In other words, we start by studying
the gravity-induced motion of the suspended particles
through looking first at the problem of a single particle in a
rotating drum, under the influence of gravity. Then we take
the information gained and implement it into the governing
Navier-Stokes equation for the fluid.

A. Trajectory of a suspended particle

The forces acting on the suspended particle �in the labo-
ratory frame of reference� during its motion through the rig-

idly rotating bulk of fluid are the gravity force FG, the force
due to the pressure gradient in the suspending fluid FC, and
the drag force FD �Fig. 10�. Breu et al. �7� studied the tra-
jectory of a suspended spherical particle for low Re �based
on the particle size and on its relative velocity with respect to
the fluid� and have shown that it resembles that of a falling
body in a quiescent viscous fluid. For relatively high Re, the
drag on a particle in an unsteady motion is in general not
known. Nevertheless the overall effect in our configuration is
to cause the trajectory to tend to close on itself due to the
increasing dominance of the drag force. This indeed is the
case observed for the polystyrene ball moving through the
rotating fluid in an almost circular motion, with an effective
frequency approximately equal to that of the rotating tube
�Fig. 9�. The Reynolds number in this specific case was Re
�50. With respect to the rotating frame of reference, regard-
less of Re, the suspended particles can be seen as the cause
of a time-dependent periodic disturbance to the otherwise
unperturbed continuous phase.

B. The continuous phase—Inertial waves

Turning to the continuous phase, we consider an incom-
pressible viscous fluid. The Navier-Stokes equations, with
reference to a coordinate system rotating with angular veloc-
ity �, are

�u

�t
+ �u · ��u + 2� � u = − �p̃ + v�2u ,

�1�
� · u = 0,

where v is the kinematic viscosity and p̃ is the reduced pres-
sure, incorporating the dynamical pressure and the centrifu-
gal and gravity effects:

p̃ =
p

�
−

1

2
�� � r�2 − g · r . �2�

We use the following scaled variables:

FIG. 9. Projection of the trajectory of a polystyrene particle in a
water-filled cylinder. Measurements were made in the laboratory
frame �squares� using a CCD camera facing one of the bounding
walls of the tube, which was made from transparent material. The
results were then converted to the rotating frame �triangles�, using
the known frequency of the rotating cylinder, �. The interval be-
tween successive measurements is 0.02 s. The solid symbols mark
every fifth data point.

FIG. 10. Forces acting on a suspended particle in a rotating,
fluid-filled, horizontal cylinder. The fluid is assumed to be in solid
body rotation. The particle detaches from the surface at A and re-
joins at B. The particle then acquires its initial velocity going back
from B to A.
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r* =
r

R
; t* = �t; u* =

u

U
; k̂ =

�

�
; p* =

p̃

�UR
,

�3�

U being the characteristic perturbation velocity. Equation �1�
can then be put in dimensionless form:

�u*

�t* + 	�u* · �*�u* + 2k̂ � u* = − �*p* + E�*2u*,

�4�
�* · u* = 0,

here the Rossby number, 	=U /�R, indicates the relative
weight of the nonlinear and Coriolis terms, and the Ekman
number, E=v /�R2, the relative weight of the viscous and
Coriolis terms. We now assume3 an almost inviscid fluid
�E
1� and that the perturbation caused by the suspended
particles is small �	
1�, and arrive at the following linear-
ized set of equations for the reduced-pressure and velocity

components in cylindrical coordinates �taking k̂= ẑ*�:

�ur
*

�t* − 2u�
* = −

�p*

�r* ,

�u�
*

�t* + 2ur
* = −

1

r*

�p*

��* ,

�5�
�uz

*

�t* = −
�p*

�z* ,

1

r*

��r*ur
*�

�r* +
1

r*

�u�
*

��* +
�uz

*

�z* = 0.

As the suspended particles are believed to be the source of a
time periodic disturbance to the otherwise rigidly rotating
fluid we ascribe the velocity and reduced pressure fields the
form:

�ur
*,u�

*,uz
*,p*� = �U*�r*�,V*�r*�,W*�r*�,P*�r*��exp�i�t*� ,

which, by substitution into Eq. �5� gives:

i�U* − 2V* = −
�P*

�r* ,

i�V* + 2U* = −
1

r*

�P*

��* ,

�6�

i�W* = −
�P*

�z* ,

1

r*

��r*U*�
�r* +

1

r*

�V*

��* +
�W*

�z* = 0,

and from which a second order differential equation for the
effective pressure can be derived:

� �2

�r*2 +
1

r*

�

�r* +
1

r*2

�2

��*2 + �1 −
4

�2	 �2

�z*2
P* = 0. �7�

For �2 the governing differential equation for the pressure
is of elliptic type—that is Laplace’s equation under scaling
of the z coordinate. For ��2, on the other hand, the govern-
ing equation is of hyperbolic type and thus the scenario is
quite different. The equation is now a wave equation with the
z coordinate playing the role of time �Poincaré equation4� As
mentioned above, the experimental data indicates that segre-
gation is associated with ��1 �i.e., the frequency of distur-
bance is close to the rotation frequency� and thus we assume
in the following that the governing equation is hyperbolic.

Next we seek a standing wave solution. We start with Eq.
�7� and further assume the following spatial dependence:
f�r*�exp�i�m�*+kz*��. Inserting this into Eq. �7� gives
Bessel’s equation of order m:

r*2 d2f

dr*2 + r* df

dr* + ��2r*2 − m2�f = 0, �8a�

where

�2 � k2� 4

�2 − 1	 . �8b�

As m has to be an integer �requirement of periodicity with
respect to �*�, the only relevant solution of the above is the
Bessel function of the first kind of order m �the second so-
lution being the Bessel function of the second kind of order
m, which diverges for r*=0�. We thus have for the pressure,

P* = P0Jm��r*�exp�i�m�* + kz*�� , �9�

where P0 is an amplitude. The corresponding velocity com-
ponents are

U* = − i
�P0

4 − �2�2m
Jm��r*�

�r* + �Jm� ��r*�
exp�i�m�* + kz*�� ,

V* =
�P0

4 − �2�2Jm� ��r*� + m�
Jm��r*�

�r* 
exp�i�m�* + kz*�� ,

�10�

W* = −
kP0

�
Jm��r*�exp�i�m�* + kz*�� .

The boundary conditions now have to be implemented. The
condition at the vertical walls, W*�z*=0 ,L /R�=0, is satisfied
by a superposition of two similar waves, having wave num-
bers equal in magnitude and given by

3Discussion of the validity of these assumptions with regard to the
experiments will be given in Sec. V. 4Named after H. Poincaré for his pioneering work �13�.
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kn =
n�R

L
, n = ± 1, ± 2, ± 3, . . . , �11�

which propagate in opposite axial directions.
At the curved cylindrical surface we have U*=0 on r*

=1, yielding �using the analytical relationship between Jm� ,
Jm, and Jm−1�:

�Jm−1��� + m� 2

�
− 1	Jm��� = 0 �12�

or, using Eq. �8b�:

�Jm−1��� + m��1 + ��L/n�R�2 − 1�Jm��� = 0. �13�

Equation �13� together with Eqs. �8b� and �11� determine, for
a given tube �that is, given R and L�, the eigenfrequencies
�lmn �l being the index corresponding to the roots of Eq.
�13��.

IV. CONFIRMATION OF THEORETICAL APPROACH

We are now in a position to interpret the experimental
observations in light of the foregoing theoretical approach.
We argue that the segregation of the particles is a manifesta-
tion of an inertial mode. First, we recall that in the natural
circumstances, all excited inertial modes are bound to decay
in the spin-up time, tSU�L / �v��1/2 �14�, which is typically
1 to 2 min in our configuration. However, gravity, by means
of its induced effect on the particles’ motion, is able to con-
tinuously excite modes with angular frequency ��1. Of par-
ticular relevance are the resonant modes with m=1 because
the combination �*+ t* yields a stationary flow field in the
laboratory frame of reference.

Denoting the inertial mode wavelength in the axial �z�
direction by �, we have, utilizing Eqs. �8b� and �12�:

�J0��� + � 2

�
− 1	J1��� = 0, �14a�

�

R
=

2�

�
� 4

�2 − 1. �14b�

Considering the first root of Eq. �14a�, we find that � /R
varies from 3.26 to 4.20 when � changes between 1.18 and
0.95, which is in good agreement with the scaled experimen-
tal periodic length �� /R� observed in Figs. 4 and 8. Con-
secutive roots yield decreasing values for � /R. The observed
fact that there is an interval of periodic lengths �Figs. 4 and
8� rather than a single value, as would be expected for a
discrete frequency excitation, might be attributed to the large
number of particles participating in the mode excitation. This
would mean that a band of frequencies is excited in the vi-
cinity of �=1, each frequency in the band corresponding to a
different resonant tube length.

In the particular case for which the tube radius is given
�r*=1� and �=m=1, the dimensionless velocity components
of the inertial modes are

ur
* = V0�2

J1��r*�
�r* + J1���r*�
sin��* + t*�cos�kz*� ,

u�
* = V0�2J1���r*� +

J1��r*�
�r* 
cos��* + t*�cos�kz*� , �15�

uz
* = �3V0J1��r*�sin��* + t*�sin�kz*� ,

where V0�2k2P0 /�, and � and k are determined by Eqs.
�14a� and �8b�, respectively. The first root of Eq. �14a� is �
=2.74 yielding a wavelength � /R=3.97. The tube lengths
corresponding to inertial mode vibrations are given by L /R
=1.985n.

In Fig. 11 we present the velocity field �15� for the inertial
mode �1,1,3� in the vertical plane through the axis of rota-
tion, at t*=0. The arrows in the figure represent both the
relative magnitude and the direction of the velocity field. The
figure suggests that the suspended particles, initially exciting
the inertial mode, are carried by the axial component of the
fluid to the loci of W*=0.

The fact that the observed periodic spacing corresponds to
the wavelength as opposed to half-wavelength �as it does, for
instance, for Kundt’s tube� might be related to the correlation
between the flow field in alternate r−� nodal planes and the
gravity-induced motion of the suspended particles. Figure 12
shows the calculated velocity field in the r−� nodal planes
at z=� /k and z=0 at t*=0, both in the rotating and in the
laboratory frames of reference. In the former plane there is a
good correlation between the theoretical field and the ob-
served off-centered ring of Figs. 7�a� and 9, imposing an
appropriate velocity pattern on its circumference. The flow
field in the latter plane does not correlate the particles’ tra-
jectory. If the same number of particles were in either kind of
nodes, the resultant flow would cancel and there would be no
segregation. The fact that at the walls one can have either of
the two flow patterns shown in the right column of Fig. 12,
together with the fact that the gravity induced trajectory of
the particles correlates only one of those, lead to two degen-
erate states for each resonant tube length.

Visualizing the actual flow field would obviously be valu-
able to confirm the validity of the theoretical approach. To
this end we performed an experiment with 1 mm glass beads
suspended in a 7 cP water-glycerol solution. As a result of

FIG. 11. Visualization of the velocity field in the vertical plane
through the axis for the inertial mode �1,1,3�, at t*=0. The arrows
drawn represent the direction and relative magnitude of the velocity
field.
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stirring of the two components the fluid contained tiny air
bubbles, which played the role of tracers of the flow field and
thus allowed its photographic capture.

The experimental setup used was the same as that used in
the investigation of the dependence of the periodic length on
tube length �Fig. 2�, except that now the only illumination
was a thin light sheet directed from above in the vertical
plane through the axis of rotation. In Fig. 13 we present the
photograph of the illuminated volume together with a visu-
alization of the predicted flow due to the existence of the
inertial wave. The predicted flow field is seen to be in good
agreement with the observed one. A video clip taken of the
same illuminated volume �11� confirms the predicted sense
of circulation between neighboring nodes.

Inertial waves were observed in the past in the configura-
tion of a rotating cylinder using injected dye, revealing gen-

eral features of the flow pattern �15,16�. This is a visualiza-
tion of the actual flow field pertaining to an inertial mode,
from which a detailed velocity field can in principal be ob-
tained.

V. DISCUSSION

The banding phenomenon of suspended particles in a ro-
tating horizontal cylinder has been investigated both experi-
mentally and theoretically. The experimental investigation
focused on a dilute, low viscosity suspension containing
millimeter-sized solid particles. The experiments indicate a
robust phenomenon independent of particle characteristic
and tube diameter �Fig. 4�. The effects of viscosity were
shown to be minor up to a value of 10 cP �Fig. 8�. A theo-
retical framework was given which suggests a mechanism
leading to banding. In the theory the suspended particles are
the source of a periodic time dependent perturbation �in the
rotating frame of reference� to the otherwise quiescent fluid.
This disturbance excites inertial modes in the rotating
bounded fluid. Of particular importance is the inertial mode
corresponding to excitation at a frequency close to �, and
which when viewed from the laboratory frame seems station-
ary. The circulation in the vertical plane through the axis of
rotation corresponding to this mode �Fig. 11� is believed to
be the cause of segregation into alternate nodes of the mode.
The periodic length is thus predicted to be equal to the wave-
length of the inertial mode, ��4R; in good agreement with
the observed periodic length �Figs. 4 and 8�. The theoretical
predictions were further confirmed by a photographic capture
of the projection of the velocity field on the vertical plane
through the axis �Fig. 13�.

The two simplifying assumptions of an inviscid, linearly
perturbed fluid, which enabled the physical insight into the
origin of the banding mechanism, represent the first step in a
complex singular perturbation procedure.5 The assumed
smallness of the Ekman number �E
1� can be shown to be
consistent with the relevant experimental parameters. If we
assume that we indeed have a standing wave then the char-
acteristic length will be the order of the wavelength, which in
our case is the order of the tube’s radius. We therefore can
write

E =
v

�L2 =
v

��2 �
v

�R2 . �16�

For the case of suspended particles in water �v
�0.01 cm2/s�, the angular frequency of rotation is about
10 rad/s, thus taking R�1 cm:

E = 10−3.

Hence we see that the viscous term is indeed negligible in
the interior. The viscous effects are confined to small do-
mains near the walls �in particular the important Ekman
boundary layers�. Moreover, we learn from Eq. �16� that for
values of viscosity appreciably higher than ten times that of

5A detailed account of the particular case for which 	
E1/2
1 is
given by Greenspan �14�.

FIG. 12. Visualization of the velocity field in the nodal planes
z=0 and z=� /k in rotating and in laboratory frames of reference. In
these planes the axial component W*=0. The perturbation ampli-
tude used in the calculation of the velocity field in the laboratory
frame is V0=0.2 �scaled by the unperturbed velocity at the
circumference�.

FIG. 13. Projection of the velocity field on the vertical plane
through the axis of rotation for the �1,1,4� mode �laboratory frame
of reference�. �a� Photographic capture of the flow field using a
3 mm light sheet. The relatively large white blobs seen are the glass
balls causing the excitation of the inertial wave. The thin streaks
represent the trajectory of the small air bubbles �tracers�. �b� Visu-
alization of the theoretical field corresponding to the same mode.
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water the theoretical framework presented will not be a valid
one. This last prediction is in agreement with the observed
tendency of the bands to be unstable for values higher than
10 cP, mentioned in Sec. II D.

While the above estimate agrees with previous works of
Lipson and Seiden �6� and of Breu et al. �7�, the correspond-
ing Ekman number for the experiments carried out by Mat-
son et al. �8� is E�0.1. This intermediate value implies that
the viscous term is not negligible. However, inertial effects
such as those considered here have to be taken into account
in addressing their experiments. Indeed, the flow pattern
which is visible in the experiments of Matson et al. is con-
sistent with the present interpretation. In addition these au-
thors report that “The trajectory center follows a zigzag path,
being closer to the upgoing wall for the r−� planes with the
highest particle densities and closest to the downgoing wall
for the smallest particle densities,” which exactly describes
the zero-velocity axis �in the horizontal plane� in our model.

The Rossby number 	, indicating the relative importance
of the nonlinear term in Eq. �4�, or equivalently, the ratio of
the dimensional perturbation amplitude to the container ve-
locity ��R�, can in principle be adjusted by varying the ro-
tation frequency of the bounding cylinder though ideal con-
ditions for segregation into bands seem to correspond to non-
negligible values. Formally, Eq. �5� is derived through taking
the first component of the perturbation series in powers of 	:

u*�r*,t*,E,	� = �
n=0

�

u*�n��r*,t*,E�	n,

�17�

p* = �
n=0

�

p*�n��r*,t*,E�	n.

It will be instructive to study the yet unexplored influence of
higher orders in Eq. �17� on the flow. In particular, such a
study might shed light on the physical origin of the phenom-
enon of oscillations between two possible band patterns.

The fact that in some instances periodic lengths approxi-
mately equal to half the value of 4R were observed for small
particles ��100 �m� might be attributed to their relatively
strong tendency to adhere to the flow field and act as tracers.
This would mean that changes in particle concentration
along the axis of rotation would be more moderate, and, in
particular, that in the interleaving nodal planes �e.g., the z
=0 plane in Fig. 12� there would be a noticeable concentra-
tion, as a result of the converging character of the flow field
�Fig. 11�.

Our discussion has focused on positively buoyant par-
ticles though banding of negatively buoyant particles was
observed �i.e., air bubbles suspended in water �6��. The situ-
ation in this case is symmetrical to the one with positively
buoyant particles as now the force due to gravity changes its
sign. Thus, with reference to Fig. 9, the particle will detach
from the bounding surface at a point in the fourth quarter
and, going through a symmetrical trajectory to the one de-
picted, will reunite at a point on the upper part of the tube.
This fact is neatly confirmed by the observed tendency of
positively and negatively buoyant particles, suspended in the
same fluid-filled tube, to segregate into alternate nodal planes
�10�.

We believe the results of the present work might find
further applications not only in industrial applications such
as centrifuge separation, but also in related fields such as
astrophysics and geophysics where mechanisms of aggrega-
tion for solid particles, suspended in a rotating bulk of fluid,
are sought �e.g., dust aggregation in protoplanetary accretion
disks�.
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